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In December 2020, the Social Wellbeing Agency published the Dataset Assembly Tool: A resource 
to make data wrangling faster and easier. Following the development of this tool, the Agency 
developed new tools to summarise and confidentialise research outputs. The code that provides 
the new tools is available alongside the Dataset Assembly Tool. This presentation provides 
guidance on how the summarise and confidentialise tools work, including several worked 
examples.

Both the Dataset Assembly Tool and these new tools are demonstrated in the IDI exemplar 
project – published by the Agency in April 2022. We recommend using this document alongside 
the Dataset Assembly Tool and the IDI exemplar project documentation. Both sets of 
documentation can be found here: https://swa.govt.nz/publications/guidance/.

The code and accompanying files can be found on the Agency’s GitHub page here: 
https://github.com/nz-social-wellbeing-agency. Versions of all those files are available inside the 
data lab, but for the latest version please see the Agency’s website or GitHub page.

This presentation includes examples of code that were current at time of writing. ACTUAL CODE 
MAY HAVE BEEN UPDATED FOLLOWING PUBLICATION. Please see more recent resources if 
demonstrated code does not perform as expected.
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Most data lab projects follow this process or something very similar.

• Definitions and Analysis can vary a lot between projects

• Assembly and Output often look very similar between projects

Most of the output submitted for checking is simple counts, totals, and cross-tables.

This is the type of output that we can automate.

Producing research outputs

Definitions Assembly Analysis Output

Introduction

Within the secure data lab environment, provided by Stats NZ, approved researchers can access 
unit record data for individuals and businesses. This data is stored in either the Integrated Data 
Infrastructure (IDI) or the Longitudinal Business Database (LBD). A key restriction for data lab 
research is that all outputs must be checked by Stats NZ before being released from the secure 
environment. This checking ensures that the privacy and confidentiality is preserved.

This checking requirement also effects how research using the IDI and LBD is delivered: It creates 
a distinct Output stage where results need to be summarised and confidentialised. This is the 
stage of a research project that these tools are designed for.

Most of the output created in this stage and submitted to Stats NZ for checking is simple counts, 
totals, and cross-tables. This is the output type that these tools are designed for.

These tools can be used outside the data lab environment – they work with any dataset in R, and 
can also work with data stored in a database. But they have been designed with the data lab in 
mind and they reflect the confidentiality requirements of the IDI.
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setwd("path/to/where/all/the/files/are/stored")
source("utility_functions.R")
source("dbplyr_helper_functions.R")
source("table_consistency_checks.R")
source("summary_confidential.R")

rectangular_table = read.csv("./path/input_file_name.csv", as.is = TRUE)

my_cols = c("Qual", "Region", "Age")
all_groups = cross_product_column_names(my_cols, my_cols)

output = summarise_and_label_over_lists(
df = rectangular_table,
group_by_list = all_groups,
summarise_list = list("Identity"),
make_distinct = FALSE, make_count = TRUE, make_sum = FALSE)

conf_output = confidentialise_results(output)

write.csv(conf_output, "./path/output_file_name.csv")

Where we are aiming for

1) Load code for tools 
into workspace

2) Load a csv file

3) Columns to group by

4) Summarise

5) Confidentialise

6) Write summary to csv

Introduction

These fifteen lines of R code make summarised and confidentialised results ready for output 
submission. They make use of tools developed at the Social Wellbeing Agency to save hours of 
effort by researchers.

This training documentation guides staff through the tools. It has been written to support the 
adoption and use of the Agency’s tools. Working through this documentation will give 
researchers a strong understanding of these fifteen lines and the confidence to adopt & adapt 
them in their own work.

All of the Agency’s tools have been developed to work smoothly together. A full, end-to-end 
example of the use of these tools can also be found in the IDI exemplar project, especially in the 
"output_results – using R tools.R" file.

The rest of this document works through each key component of the tools in detail.
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Rectangular input format

• One row per identity/person/business

• One column per measure

Example input:

Establishing expected formats

Long-thin output format

• Columns-value pairs

• One row per summary

Example output:
Identity Qual Region Income

1001 North $5000

1002 Diploma North $15000

1003 Degree North $15000

1004 Degree South

1005 Diploma South $20000

1006 Diploma South $25000

col01 val01 col02 val02 summ. count sum

Region North Income 3 35000

Region South Income 2 45000

Qual Diploma Region North Identity 1

Qual Degree Region North Identity 1

Qual Degree Region South Identity 1

Qual Diploma Region South Identity 2

Setup

Expected or required formats enable inputs to be manipulated by automated tools.

There is no required format for the input table. The tool does not impose any restriction on the 
column names, number of rows, or the number of columns. But it has been designed anticipating 
that most input tables will have one row per identity (person, business, household – in the IDI 
this is often snz_uid) and one column per measure. In the left example, the table gives the 
identity number (ID), qualification, region, and income for six people.

The summarising tool produces output according to a pre-defined long-thin format. The 
confidentialisation tool requires its input to take this format and outputs this format. The format 
is defined by:
• Pairs of "col" and "val" columns

• The "col" columns contain the name of a column in the rectangular dataset.
• The  "val" columns contain the unique values found in the corresponding column.

• A column for the variable summarised.
• Columns for the numeric result: number of distinct records, count of all records, and/or sum 

total of values.
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Loading data for summarising

Loading code for tools into workspace
setwd("path/to/where/all/the/files/are/stored")
source("utility_functions.R")
source("dbplyr_helper_functions.R")
source("table_consistency_checks.R")
source("summary_confidential.R")

Example accessing database table
db_con = create_database_connection(database = "IDI_Sandpit")
rectangular_table = create_access_point(db_con,"[db]", "[schema]", "[table]")

Example reading csv file
rectangular_table = read.csv("path/file_name.csv", as.is = TRUE)

Setup

The code for these tools is written in R. This means that to use this code some programming in R 
is required.

Throughout this presentation we give key lines of code to support researchers who are unfamiliar 
with R make use of these tools.

For researchers unfamiliar with R, the first step is to load your data into R. This slide 
demonstrates two approaches:
1. Accessing a table stored in the database
2. Reading an existing csv file
Before each of these approaches, we recommend you load the code for the tools into the 
workspace.

When working with large input tables, accessing the table from a database is recommended. 
There are limits on the memory available in R, but when accessing a table this way it can be read 
from disk as required.

Loading a file as a csv tends to be more straightforward for researchers who prefer other 
programming languages as most languages include options to output data tables to csv files.
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The core function to produce a single summary is "summarise_and_label"

summarise_and_label(

df, # the rectangular dataset to summarise

group_by_cols, # the names of the columns to group by

summarise_col, # the name of the column to summarise

make_distinct, # T/F whether to count distinct values

make_count, # T/F whether to count values

make_sum, # T/F whether to sum values

clean, # options for cleaning the column to summarise

remove.na.from.groups # T/F should missing values be removed

)

Run a single summarySingle sum
m

ary

Researchers familiar with SQL or SAS will recognise this typical approach to summaries:
SELECT col1, col2, COUNT(*) AS num, SUM(col4) AS sum
FROM rectangular_table
GROUP BY col1, col2

Our core function works in much the same way, but with some features to make multiple 
summaries easier. Use of this function is demonstrated on the next two slides.

The first six inputs are compulsory. The last two are optional.
• T/F inputs need to take the value TRUE or the value FALSE (in R these are typed in capitals)
• remove.na.from.groups defaults to TRUE, this means that missing values in the group 

by columns are removed
• clean can taken any of the values "none", "na.as.zeros", or "zeros.as.na". 

• The default value is "none" and makes no changes
• "na.as.zeros" replaces missing values with zeros
• "zeros.as.na" replaces zeros with missing values

The summary tool can produce three types of outputs: counts of the number of distinct values, 
counts of the number of non-missing values, and the sum of the values. We do not have an 
option to produce a mean or average. The confidentiality rules require that means are produced 
with the confidentialised counts. This is a more complex rule to apply or check. So instead, the 
tool produces counts and sums separately. These can be checked for confidentiality separately 
and combined to produce a mean afterwards.
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output = summarise_and_label(

df = rectangular_table,

group_by_cols = c("Qual", "Region"),

summarise_col = "Identity",

make_distinct = FALSE, make_count = TRUE, make_sum = FALSE)

Single summary – example 1

Identity Qual Region Income

1001 North $5000

1002 Diploma North $15000

1003 Degree North $15000

1004 Degree South

1005 Diploma South $20000

1006 Diploma South $25000

col01 val01 col02 val02 summ. count

Qual Diploma Region North Identity 1

Qual Degree Region North Identity 1

Qual Degree Region South Identity 1

Qual Diploma Region South Identity 2

Single sum
m

ary

Given the rectangular table on the left, the code above creates the table shown on the right and 
stores it in a variable called output. Note how the columns specified in group_by_cols and 
summarise_col turn up as values in the output table.

This R code works very similar to the following SQL code:
SELECT Qual, Region, COUNT(Identity) AS count
FROM rectangular_table
GROUP BY Qual, Region

For every combination of qualification and region, we count the number of people (identities).

When inputting multiple groups they need to be included within c() and separated by commas. 
For example: c("col1", "col2", "col3"). The quote marks tell R that these inputs are 
text (character strings), which is the type of input the tool is expecting.

Because we have not specified the value of remove.na.from.groups it has defaulted to 
TRUE. This setting means that the Qual = missing, Region = North combination is not part of the 
output. To includes this combination in the output we would need to specify 
remove.na.from.groups = FALSE.
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output = summarise_and_label(

df = rectangular_table,

group_by_cols = "Region",

summarise_col = "Income",

make_distinct = FALSE, make_count = TRUE, make_sum = TRUE)

Single summary – example 2

Identity Qual Region Income

1001 North $5000

1002 Diploma North $15000

1003 Degree North $15000

1004 Degree South

1005 Diploma South $20000

1006 Diploma South $25000

col01 val01 summ. count sum

Region North Income 3 35000

Region South Income 2 45000

Single sum
m

ary

Given the rectangular table on the left, the code above creates the table shown on the right and 
stores it in a variable called output. Note how we set both make_count and make_sum to 
be TRUE and this produces two output columns.

This R code works very similar to the following SQL code:
SELECT Region, COUNT(Income) AS count, SUM(Income) AS sum
FROM rectangular_table
GROUP BY Region

For every region, we count the number of people (identities) and sum their income.

As mentioned on slide 6, the summary tool does not output means or averages. When we want a 
mean, we instead create the count and the sum (like this example) and calculate the mean after 
applying confidentialisation.

Because there is only one group_by_col in the code, the output includes only one pair of col 
& val columns. If we were to join this output table with the previous output table (using the 
command bind_rows), then empty col02 and val02 columns would be added to this table so 
the columns aligned.

Missing values are not counted. This is why the count for region = South takes the value 2. If we 
had set clean = "na.as.zeros" then this missing value would have been replaced by a 0 
during the calculation and the count for Region = South would have been 3 instead.
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clean and remove.na.from.groups change how missing values are handled

When calculating the number of distinct values or a count of all values, the standard behaviour 
in SQL is that missing values are not counted.

Missing values in SQL are denoted as NULL. Missing values in R are denoted as NA ( “Not 
Available”)

clean controls the handling of missing values in the summarised columns
• Zero values can be converted to missing, or missing can be converted to zero.

remove.na.from.groups controls the handling of missing values in the group by columns
• Groups without a label can be automatically  removed from the output.

Use cleaning options when summarisingSingle sum
m

ary

The clean input controls handling of zeros and missing values in the summarised columns.
• It is common for data to contain missing values, and it can be cumbersome to set all missing 

values to zero. We can use clean = "na.as.zeros" to replace all missing values with 
zeros during the summarising. This ensure that missing values are included when counting 
records.

• When working with binary indicator variables, zero values often indicate the absence of an 
attribute. When summarising, we may not want to count zero values. Hence using clean = 
“zeros.as.na" will replace zeros with missing values during the summarising. This 
ensures the zero values are excluded when counting records.

• Another common application for this control arises when considering average income. If you 
want to calculate the average income of only those people with income, then using clean = 
“zeros.as.na" will ensure people without income will be excluded. If you want to 
calculate the average income of all people (whether or not they had income), then using 
clean = "na.as.zeros" will ensure all people are included.

The remove.na.from.groups input controls how missing values in the grouping columns 
are handled. For example, when producing a regional summary how should we summarise 
people who do not have a region.
• With remove.na.from.groups = FALSE the summarised output will contain a row 

for people who do not have a region.
• With remove.na.from.groups = TRUE the summarised output will not contain a row 

for people who do not have a region.
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Run multiple summaries

The function to produce a multiple summaries is "summarise_and_label_over_lists"

summarise_and_label_over_lists(

df, # the rectangular dataset to summarise

group_by_list, # lists of the columns to group by

summarise_list, # lists of the column to summarise

make_distinct, # T/F whether to count distinct values

make_count, # T/F whether to count values

make_sum, # T/F whether to sum values

clean, # options for cleaning the column to summarise

remove.na.from.groups # T/F should missing values be removed

)

M
ultiple sum

m
aries

Producing a single summary is straightforward in most programming languages and does not 
require special tools. The key advantage of our summary tool is how it produces multiple 
summaries with a single command.

The core function to produce a multiple summaries is called 
summarise_and_label_over_lists. Use of this function is demonstrated on the next 
two slides.

This function takes almost identical inputs to the single summary function. The key difference is 
that multiple sets of grouping columns and multiple summarise columns can now be specified.
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output = summarise_and_label_over_lists(
df = rectangular_table,
group_by_list = list("Qual", "Region"),
summarise_list = list("Identity", "Income"),
make_distinct = FALSE, make_count = TRUE, make_sum = FALSE)

Multiple summaries – example 1

Identity Qual Region Income

1001 North $5000

1002 Diploma North $15000

1003 Degree North $15000

1004 Degree South

1005 Diploma South $20000

1006 Diploma South $25000

Col01 val01 summ. count

Qual Diploma Identity 3

Qual Degree Identity 2

Region North Identity 3

Region South Identity 3

Qual Diploma Income 3

Qual Degree Income 1

Region North Income 3

Region South Income 2

M
ultiple sum

m
aries

Given the rectangular table on the left, the code above creates the table shown on the right and 
stores it in a variable called output. Note how the output includes all the combinations of the 
columns given in the inputs.

Overall, four summaries are produced and then stacked. For each type of qualification and 
region, we count both the number of people (identities) and the number with income. For 
example, there are two people with a degree qualification but only one person with a degree 
qualification has income.

When summarise_and_label_over_lists is used, it runs summarise_and_label
multiple times and stacks all the output into a single table.

You can then give this output directly to the confidentialisation function (demonstrated in a later 
slide) or write it out to csv.

We often use the Identity column when counting as we want to count every single row, and this 
column is guaranteed to have a value in every single row. We do not recommend making the sum 
of the Identity column – when working with a database, the sum of ID numbers can result in 
numbers that are too large for the data type, leading to errors.

11



output = summarise_and_label_over_lists(
df = rectangular_table,
group_by_list = list(c("Qual", "Region"), "Region"),
summarise_list = list("Identity"),
make_distinct = FALSE, make_count = TRUE, make_sum = FALSE)

Multiple summaries – example 2

Identity Qual Region Income

1001 North $5000

1002 Diploma North $15000

1003 Degree North $15000

1004 Degree South

1005 Diploma South $20000

1006 Diploma South $25000

col01 val01 col02 val02 summ. count

Qual Diploma Region North Identity 1

Qual Degree Region North Identity 1

Qual Diploma Region South Identity 2

Qual Degree Region South Identity 1

Region North Identity 3

Region South Identity 3

M
ultiple sum

m
aries

Given the rectangular table on the left, the code above creates the table shown on the right and 
stores it in a variable called output. Note how the output includes all the combinations of the 
columns given in the inputs.

Overall, two summaries are produced and then stacked. For the first summary, we count the 
number of people with each combination of qualification and region (e.g. 'degree' and 'north' has 
1 person). For the second, we just count the number of people in each region (e.g. 'north' has 3 
people).

Note that group_by_list and summarise_list need to be given lists.
• This is why even though there is only a single value to summarise, it is placed inside list()
• As this example shows, we can combine multiple columns inside a list using c()

Two separate summaries must be done to complete this command. Because the Region 
summary will have fewer output columns than the Qual and Region summary, when the two 
summaries are combined into a single output we have empty cells in the col02 and val02
columns.
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We created "cross_product_column_names" to quickly produce groups

cross_product_column_names(

..., # sets of column names inside c()

always, # columns to include in all groups

drop.dupes.within, # T/F remove duplicates within output

drop.dupes.across # T/F remove duplicates across output

)

Quick setup for multiple summaries

Create groups

Often we want to produce many different summaries all at once. Rather than needing to type 
each of these combinations (which would be very time consuming), we created 
cross_product_column_names to automatically produce combinations of its inputs. Use 
of this function is demonstrated on the next few slides.

The ... input can take any number of sets of column names. Each set is contained inside c()
and separated by commas between sets. The function will output groups that are one column 
from every set, covering all possible combinations.

The last three inputs are optional.
• always allows you to specify columns that should be used in every summary. By default it 

includes no columns in every output.
• drop.dupes.within defaults to TRUE. When TRUE the function checks for and removes 

cases where the same column appears more than once in a single group. For example: (Qual, 
Region, Region) would become (Qual, Region). With this setting turned off the summary tool 
is likely to error.

• drop.dupes.across defaults to TRUE. When TRUE the function checks for and removes 
equivalent groupings across all groupings. For example: it would ensure you received only one 
of (Qual, Region) and (Region, Qual). If you want to allow for different orders of the same 
columns set it to FALSE.
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Example output with different settings of drop.dupes controls

drop.dupes.within = FALSE, drop.dupes.across = FALSE

c("Qual", "Qual"), c("Qual", "Region"), c(Region", "Qual")

drop.dupes.within = TRUE, drop.dupes.across = FALSE

c("Qual"),         c("Qual", "Region"), c(Region", "Qual")

drop.dupes.within = FALSE, drop.dupes.across = TRUE

c("Qual", "Qual"), c("Qual", "Region")

drop.dupes.within = TRUE, drop.dupes.across = TRUE

c("Qual"),         c("Qual", "Region")

Controls determine handling of duplicates

Create groups

Duplicates can appear within a single grouping or across groupings. This slide gives four examples 
of output with each combination of drop.dupes.within and drop.dupes.across.

In each example, a set of column names is contained within a c(). This is how groups of things 
are coded in R. So c("Qual", "Region") denotes a group in R containing both Qual and 
Region (as text strings).

1. The first case, where both values are FALSE, can be considered the raw output. Note that 
Qual appears twice within the first group, and that the second and third groups are 
equivalent, but in different orders.

2. The second case has drop.dupes.within = TRUE. Note that Qual no longer appears 
twice within the first group. But the second and third groups are still equivalent.

3. The third case has drop.dupes.across = TRUE. Note that the third group has been 
removed as it was equivalent to the second group. But the first group still contains Qual 
twice.

4. The fourth case has both values set to TRUE. Note that Qual only appears once in the first 
group, and the third group has been removed.

For most applications, researchers will want drop.dupes.within = TRUE. But you will 
have to choose drop.dupes.across depending on whether you want different orders of 
the group by columns .
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Manual

all_groups = list(

c("Qual"),          c("Qual", "Region"), c("Qual", "Age"),

c(Region", "Qual"), c("Region"),         c("Region", "Age"),

c("Age", "Qual"),   c("Age", "Region"),  c("Age")

)

Using "cross_product_column_names"

all_groups = cross_product_column_names(

c("Qual", "Region", "Age"), c("Qual", "Region", "Age"),

drop.dupes.across = FALSE, drop.dupes.within = TRUE)

Using "cross_product_column_names" v2

my_cols = c("Qual", "Region", "Age")

all_groups = cross_product_column_names(my_cols, my_cols,

drop.dupes.across = FALSE , drop.dupes.within = TRUE)

Quick setup for groups – example 1

Create groups

The three examples above produce identical output: a variable called all_groups that is a list 
with nine different combinations of Qual, Region, and Age. This variable can be input directly into 
summarise_and_label_over_lists as the group_by_list.

While we can do this manually (like the first case) this quickly becomes cumbersome as the 
number of groups increases. The second case is faster and easier. It takes two sets of column 
names and produces all pairwise combinations between them.

In the third case, instead of entering the columns directly, we store the list of column names in a 
variable called my_cols and give this as an input. Because we give this twice, the output 
includes pairwise combinations.

Because we set drop.dupes.across = FALSE the output includes both orders of the 
variables. In this example, we have both c("Qual", “Age") and c(“Age", "Qual"). If 
we had used the default drop.dupes.across = TRUE then only one of each pair would 
have been included in the output.

When doing all pairwise combinations of the input columns we might expect the output to 
include c("Qual", "Qual") this output is replaced by c("Qual") because of the setting 
drop.dupes.within = TRUE.
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Manual

all_groups = list(

c("Qual", "Age", "Ethnicity"),

c("Region" , "Age", "Ethnicity")

)

Using "cross_product_column_names"

all_groups = cross_product_column_names(

c("Qual", "Region"),

always = c("Age", "Ethnicity"))

Using "cross_product_column_names" v2

my_cols = c("Qual", "Region")

always_cols = c("Age", "Ethnicity")

all_groups = cross_product_column_names(my_cols, always = always_cols)

Quick setup for groups – example 2

Create groups

The three examples above produce equivalent output: a variable called all_groups that is a 
list with different combinations of Qual, Region, Age, and Ethnicity. This variable can be input 
directly into summarise_and_label_over_lists as the group_by_list.

In the third case, instead of entering the columns directly, we store the group column names in a 
variable called my_cols and the always columns in a variable called always_cols. These two 
variables are given as inputs to cross_product_column_names.

Note that we have to specify "always =" for the always input. These two inputs will produce 
different outputs:
• cross_product_column_names(my_cols, always = always_cols)
• cross_product_column_names(my_cols, always_cols)

In the second case (without "always ="), the function will instead produce all pairs where the 
first column comes from my_cols and the second column comes from always_cols.
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Naïve approach – also produces unwanted pairs of ethnic groups

demographic_columns = c(

"Age", "Sex", "Eth_Euro", "Eth_Maori", "Eth_Pacific", "Eth_Asian“

)

all_groups = cross_product_column_names(demographic_columns, demographic_columns)

Refined approach – does not produce unwanted pairs of ethnic groups

demographic_columns = c("Age", "Sex")

ethnicity_columns = c("Eth_Euro", "Eth_Maori", "Eth_Pacific", "Eth_Asian")

all_groups = c(

cross_product_column_names(demographic_columns, demographic_columns),

cross_product_column_names(demographic_columns, ethnicity_columns)

)

Combining groupings

Create groups

Suppose we want to produce pairwise combinations of all demographics columns (age, sex, and 
ethnicity). However, as we are using full response ethnicity, people can have more than one 
ethnicity, and ethnicity is stored in several different columns.

Two examples for handling ethnicity are shown above.

The first example is naive. Because we include all ethnicity columns together with the non-
ethnicity columns (age and sex), the resulting pairs of columns will also contain pairs of 
ethnicities. For example c("Eth_Euro", "Eth_Maori"). For most analyses we will not 
want pairwise combinations of ethnicity columns, so this approach creates extra output that is 
unwanted.

A better approach would be to separate the ethnicity columns from the other demographic 
columns. We can then produce two cross-products. The first will produce all pairs of the non-
ethnicity demongraphic columns, and the second will produce all pairs of ethnicity with one of 
the non-ethnicity columns. Just as we can use c() to combine together the names of columns, 
we can use it to combine together the pairs of column names produced by 
cross_product_column_names.
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Confidentialising results

The core function to confidentialising is "confidentialise_results"

confidentialise_results(

df, # summarised output to confidentialise

stable_RR, # T/F enforce consistent rounding

sum_RR, # T/F apply random rounding to the sum

BASE, # the base for random rounding

COUNT_THRESHOLD # the minimum value for counts

SUM_THRESHOLD # the minimum count for sums

)

Confidentialise

The core function to confidentialise summaries is called confidentialise_results. Use 
of this function is demonstrated on the two next slides.

With the default settings, this function applies standard confidentiality checks for IDI outputs:
• Counts are randomly rounded to base 3
• Counts less than 6 are suppressed
• Sums/totals from less than 20 individuals are suppressed

Only the first input is compulsory. All the others are optional, and default to standard IDI values.
• stable_RR determines whether random rounding should be consistent between runs. By 

default it is FALSE, because it is much slower to have this set to TRUE.
• sum_RR determines whether the sum/total should also be randomly rounded. By default it is 

FALSE, but for some outputs you may set it to TRUE. (For example, when confidentialising 
total income, there is no need to random round. But if you had summed number of children 
per person to produce total number of children, then you might want to apply random 
rounding to this total.)

• BASE determines the number we randomly round to. By default it is 3.
• COUNT_THRESHOLD determines the minimum raw count that is not suppressed. By default 

it is 6.
• SUM_THRESHOLD determines the minimum raw count so that totals are not suppressed. By 

default it is 20.
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conf_output = confidentialise_results(output)

Confidentialising – example 1

col01 val01 col02 val02 summ. count

Qual Diploma Region North Identity 10

Qual Degree Region North Identity 10

Qual Degree Region South Identity 5

Qual Diploma Region South Identity 29

col01 val01 col02 val02 summ. raw_count conf_count

Qual Diploma Region North Identity 10 9

Qual Degree Region North Identity 10 12

Qual Degree Region South Identity 5 NA

Qual Diploma Region South Identity 29 28

Confidentialise

Given the rectangular table at the top, the code in the middle creates the table shown at the 
bottom and stores it in a variable called conf_output.

Notes:
• The original numeric column(s) are given the prefix "raw_"
• The confidentialised numeric column(s) are given the prefix "conf_"
• Suppressed values appear as NA. In R this means ‘Not Available’ and is how missing values are 

shown.

confidentialise_results applies both random rounding and small count suppression. 
Our tools include functions for applying only random rounding or small count suppression. These 
are discussed below.
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conf_output = confidentialise_results(output)

Confidentialising – example 2

col01 val01 summ. distinct count sum

Qual Diploma Income 19 20 12345

Qual Degree Income 20 23 23456

Region North Income 5 8 345

Region South Income 26 29 98765

col01 val01 summ. raw_distinct raw_count raw_sum conf_distinct conf_count conf_sum

Qual Diploma Income 19 20 12345 18 21 NA

Qual Degree Income 20 23 23456 21 24 23456

Region North Income 5 8 345 NA 9 NA

Region South Income 26 29 98765 27 27 98765

Confidentialise

Given the rectangular table at the top, the code in the middle creates the table shown at the 
bottom and stores it in a variable called conf_output.

Notes:
• The distinct and count columns are confidentialised separately.
• At least one of the distinct and count columns must be present to confidentialise the sum 

column.
• If both the distinct and count columns are present, then the sum will be suppressed if either is 

less than 20.
• Raw counts of 20 are forced to round up to protect confidentiality (if rounded down to 18 

then the original value can be deduced because we know that totals are only released if the 
count is at least 20).
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Component functions for confidentialising

For when confidentialise_results is not suitable

# Randomly rounds a numeric vector to the given base.

randomly_round_vector(input_vector, base = 3, seeds = NULL)

# Applied random rounding to specified columns of a dataset.

apply_random_rounding(df, RR_columns, BASE = 3, stable_across_cols = NULL)

# Applied graduated random rounding (GRR) to specified columns of a dataset.

apply_graduated_random_rounding(df, GRR_columns, stable_across_cols = NULL)

# Suppresses values where the count is too small.

apply_small_count_suppression(df, suppress_cols, threshold, count_cols = suppress_cols)

Confidentialise

The confidentialise_results function applies all the standard confidentialisation rules. 
Researchers wanting finer control over the confidentialisation process may want to use the 
component subfunctions that are part of our tools. A short list of these subfunctions is given 
above. We recommend that researchers use the confidentialise_results function 
where possible, and only use the component subfunctions if additional confidentialisation is 
required.

Key points to note if using the component functions:
• Inputs with an equals sign after them are optional and have the default value given by the 

equals sign.
• apply_random_rounding works on dataframes, randomly_round_vector does 

not work on dataframes (it only works on vectors).
• apply_graduated_random_rounding applies the GRR proceedure to a dataframes 

specified in the Microdata Output Guide by Stats NZ. For other forms of graduated rounding 
you will need to combinine randomly_round_vector and case_when.

• apply_small_count_suppression applies suppression to a dataframe. It can take 
both a column to suppress and a column that contains the number of observation (count).

More detailed information on each function can be found in the summary_confidential.R file. 
Before each function in this file is a text description of the function and what it does.
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setwd("path/to/where/all/the/files/are/stored")
source("utility_functions.R")
source("dbplyr_helper_functions.R")
source("table_consistency_checks.R")
source("summary_confidential.R")

rectangular_table = read.csv("./path/input_file_name.csv", as.is = TRUE)

my_cols = c("Qual", "Region", "Age")
all_groups = cross_product_column_names(my_cols, my_cols)

output = summarise_and_label_over_lists(
df = rectangular_table,
group_by_list = all_groups,
summarise_list = list("Identity"),
make_distinct = FALSE, make_count = TRUE, make_sum = FALSE)

conf_output = confidentialise_results(output)

write.csv(conf_output, "./path/output_file_name.csv")

Combining it all together

1) Load code for tools 
into workspace

2) Load a csv file

3) Columns to group by

4) Summarise

5) Confidentialise

6) Write summary to csv

Conclude

All the tools demonstrated above are designed to work smoothly together. Here we provide an 
end-to-end demonstration of these tools.
1. Load code for tools into workspace
2. Load a csv file
3. Specify the columns to group by
4. Summarise
5. Confidentialise the summary
6. Write the summary out to a csv file

If you are using this as a template for your own analysis, then the key places to edit are:
• The path to where files are stored
• The name of your input file and output file
• The names of the columns you want to group by
• The name(s) of the columns you want to summarise
• Whether you want distinct, count, or sum

22



Drag from here

To here

Pivot tables for viewing outputs

Filter col01 and col02 here

Insert pivot table from here

Read cross-tab of selected col01 and col02 values

Tips and Tricks

The long-thin format produced by the summarise and confidentialise tools is well suited for 
output checking by Stats NZ. However, it is not the best choice of format to inspect or review the 
results.

We have found Excel pivot tables to be an effective way to present the long-thin table for further 
analysis.

The example above was produced using the following steps:
• Select the cells containing all the data (including the header row)
• Insert  Pivot Table  Ok
• Drag col01 and col02 to the filters
• Filter col01 to the first measure of interest
• Filter col02 to the second measure of interest
• Drag val01 to the rows and val02 to the columns
• Drag conf_count to the values
• Click on conf_count in the values list  Value Field Settings  Sum  Ok

You can make this type of pivot table interactive by inserting slicers for col01 and col02. 
Instructions on how to do this can be found online.
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rectangular_table = read.csv("./path/input_file_name.csv", as.is = TRUE)

my_cols = c("Qual", "Region", "Age")
all_groups = cross_product_column_names(my_cols, my_cols)

output = summarise_and_label_over_lists(
rectangular_table, all_groups, list("Identity"),
make_distinct = FALSE, make_count = TRUE, make_sum = FALSE

)

conf_output = confidentialise_results(output)

output_entities = summarise_and_label_over_lists(
rectangular_table, all_groups, list("Entity_ID"),
make_distinct = TRUE, make_count = FALSE, make_sum = FALSE

)

joined_output = left_join(conf_output, output_entities)
final_output = mutate(joined_output,
conf_count = ifelse(distinct >= 2, conf_count, NA))

write.csv(final_output, "./path/output_file_name.csv")

Producing entity counts

1) Load

2) Create main summary

3) Confidentialise

4) Create entity counts

5) Suppress by entity

6) Write summary to csv

Tips and Tricks

Producing entity counts can be a frustrating task for IDI researchers. Here is one approach to do 
this effectively using the summarise and confidentialise tools.

The first half is as we have demonstrated before. The part marked in orange is specific to entities. 
The idea of this part is as follows:
• Use the same groups as for the main output
• Set the summary variable to the ID that defines different identities
• Use make_distinct = TRUE to count the number of distinct entities for every grouping
• Join the entity output to the confidentialised output (by default R joins on all columns with 

the same column names)
• Where the number of distinct entities is at least 2 (the minimum) keep the current count. 

Otherwise replace it with NA.

We have done entity suppression using a simple ifelse() statement. Another option would 
be to use apply_small_count_suppression(conf_output, "conf_count ", 
2, " distinct ")
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rectangular_table = read.csv("./path/input_file_name.csv", as.is = TRUE)

my_cols = c("Qual", "Region", "Age")
all_groups = cross_product_column_names(my_cols, my_cols)

output = summarise_and_label_over_lists(
rectangular_table, all_groups, list("Entity_ID"),
make_distinct = TRUE, make_count = TRUE, make_sum = FALSE

)

conf_output = confidentialise_results(output)

final_output = mutate(conf_output,
conf_count = ifelse(raw_distinct >= 2, conf_count, NA)

)

write.csv(final_output, "./path/output_file_name.csv")

Producing entity counts alternative

1) Load

2) Create main summary
with entity counts

3) Confidentialise

4) Suppress by entity

5) Write summary to csv

Tips and Tricks

For some applications, we can produce entity counts as part of another summary.

Recall that when counting people, we often count the identity column because every person has 
an ID number. If every person we want to count has an entity ID, then we can use entity ID to 
count people. This allows us to count both people and entities in the same summary.

This approach differs from the previous slide, as we make a single summary that includes both 
count and distinct (marked in orange).
• make_count = TRUE means the output will contain a column count that contains a count 

of (non-missing) entity_ID. As everyone has an entity_ID this is equivalent to the number of 
people.

• make_distinct = TRUE means the  output will contain a column distinct that contains a 
count of the number of distinct (non-missing) entity_ID. As each distinct ID represents a 
different entity, this is the entity count.

• Note that we still need to apply entity count suppression manually. This is not handled 
automatically by confidentialise_results.
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https://github.com/nz-social-wellbeing-agency/dataset_assembly_tool

https://github.com/nz-social-wellbeing-agency/idi_exemplar_project

swa.govt.nz

Simon Anastasiadis

Thank you for your time and attention.

The summarise and confidentialise tools demonstrated above have saved significant time for 
Social Wellbeing Agency staff.
We encourage you to adopt these methods so that you might also benefit from this greater 
efficiency.
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